因式分解
因式分解(也叫因子化和因式分解)是将一个复合数拆成若干个数字,再相乘得到原数。这些较小的数字被称为因数或除数。1是所有数字的一个因子。
质因数分解是将一个复合数分解成质数,这些质数相乘后可以得到更大的数字。请注意,由于1不是质数,它不包括在质因数分解中。
例如,12可以被分解为4×3。由于4不是一个质数,这不是它的质因式。12的素数分解实际上是3×2×2。
从因式分解中得到的数字通常是有顺序的,例如,从最小的数字开始。例如,72=2^3*3^2。每个数字的因式分解都是唯一的。这可以概括为。
- 每个数字都有一个唯一的质因数
- 每一个素数因式分解都对应着一个唯一的数字
由于找到要相乘的数字对于大数来说非常困难,这个事实可以用于密码学。
多项式
这就是一种多项式的派生方式。
x + 2x 9+ {20displaystyle x^{2}+{color {Green}9x}+20}
找出两个加起来是9的数字,并且可以乘以得到20。这里,这些数字是4和5。
= x +2 x4 + x5 + {20displaystyle =x^{2}+{color {Green}4x+5x}+20}
= ( x +2 x4 ) + ( x5 + ) {20displaystyle =(x^{2}+4x)+(5x+20)}。
=x ( x + ) 4+ (5 x + ) {\4displaystyle =x(x+4)+5(x+4)}。
= ( x + ) 5( x + ) {4displaystyle =(x+5)(x+4) }
相关页面
问题和答案
问:什么是因式分解?答:因数分解是指将一个复合数分解成更小的数字,这些数字相乘后得到原数的过程。
问:通过因式分解得到的小数叫什么?
答:从因数分解中得到的较小数字被称为因数或除数。
问:1是所有数字的因数吗?
答:是的,1是所有数字的因数。
问:什么是质因数分解?
答:质因数分解是指将一个复合数分解成可以相乘的质数,从而得到更大的数字的过程。
问:1是否包括在一个数字的质因数分解中?
答:不,1不包括在数字的质因数化中。
问:你能举出一个数字和它的质因数的例子吗?
答:可以,例如,72可以被质因式分解为2^3 * 3^2。
问:每个数字的因式分解是唯一的吗?
答:是的,每个数字的因式分解都是唯一的。